Tag Archives: Medium

22. Generate Parentheses

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

class Solution {

    /**
     * @param Integer $n
     * @return String[]
     */
    function generateParenthesis($n) {
        $result = [];
        $this->helper(0, 0, $n, "", $result);
        return $result;
    }
    
    function helper($l, $r, $max, $str, &$result){
        if($l + $r == $max*2){
            $result[] = $str;
            return;
        }
        if($l < $max){
            $this->helper($l+1, $r, $max, $str."(", $result);
        }
        
        if($r < $l){
            $this->helper($l, $r+1, $max, $str.")", $result);
        }
    }
}

1023. Binary String With Substrings Representing 1 To N

Given a binary string S (a string consisting only of ‘0’ and ‘1’s) and a positive integer N, return true if and only if for every integer X from 1 to N, the binary representation of X is a substring of S.

 

Example 1:

Input:

S = "0110", N = 3

Output:

true

Example 2:

Input:

S = "0110", N = 4

Output:

false

 

Note:

  1. 1 <= S.length <= 1000
  2. 1 <= N <= 10^9

Thoughts:

I was thinking there could be an amazing algo to deal with it.
Well, the solution is quite straight forward, just follow your mind. I didn’t even give it a try during the contest.
It’s kind of unexpected for a median level question.
For the time complexity, here’s a great analysis from lee215:
Time Complexity
  1. Prove I, check number of substring

Pick two indices, there are at most S^2 substrings,
so S can contains at most S^2 integers
Time complexity upper bound O(S^2)

  1. Prove II, Check the continuous digits
    Meanwhile I know the interviewer and my reader won’t be satisfied,
    as they want no more “cheat”.

Here I have a brief demonstration to give the time complexity an acceptable upper bound.

Have a look at the number 1001 ~ 2000 and their values in binary.

1001 0b1111101001
1002 0b1111101010
1003 0b1111101011

1997 0b11111001101
1998 0b11111001110
1999 0b11111001111
2000 0b11111010000

The number 1001 ~ 2000 have 1000 different continuous 10 digits.
The string of length S has at most S - 9 different continuous 10 digits.
So S <= 1000N <= 2000.

So S * 2 is a upper bound for N.
If N > S * 2, we can return false directly.

It’s the same to prove with the numbers 512 ~ 1511, or even smaller range.

Time complexity upper bound O(S)

And finally, the code:
class Solution {

    /**
     * @param String $S
     * @param Integer $N
     * @return Boolean
     */
    function queryString($S, $N) {
        while($N > 1){
            $binary = decbin($N);
            if(strpos($S, $binary) === false){
                return false;
            }
            $N --;
        }
        return true;
    }
}

 

1021. Best Sightseeing Pair

Given an array A of positive integers, A[i] represents the value of the i-th sightseeing spot, and two sightseeing spots i and j have distance j - i between them.

The score of a pair (i < j) of sightseeing spots is (A[i] + A[j] + i - j) : the sum of the values of the sightseeing spots, minus the distance between them.

Return the maximum score of a pair of sightseeing spots.

 

Example 1:

Input:

[8,1,5,2,6]

Output:

11
Explanation: i = 0, j = 2, A[i] + A[j] + i - j = 8 + 5 + 0 - 2 = 11

 

Note:

  1. 2 <= A.length <= 50000
  2. 1 <= A[i] <= 1000

 

Thoughts:

Scan from left to right, record:

  • best score so far()
  • the best left element which could generate the largest score with the next element.
    • As we move on to the next, gap ++, impact/score — with the prev. best left element

 

class Solution {

    /**
     * @param Integer[] $A
     * @return Integer
     */
    function maxScoreSightseeingPair($A) {
        $bestResult = 0;    // Best Score (A[i] + A[j] + i - j)
        $bestAI = 0;        // The best choice of A[i] so far
        foreach($A as $a){
            // Moved to next, gap++, then the "sightseeing value" --
            $bestAI --; 
            // Best result = 
            $bestResult = max($bestResult, $bestAI + $a );
            $bestAI = max($a, $bestAI);
        }
        return $bestResult;
    }
}

well sure I can combine $bestAI –; into other expressions. Just to make it clear in this way.

1022. Smallest Integer Divisible by K

Given a positive integer K, you need find the smallest positive integer N such that N is divisible by K, and N only contains the digit 1.

Return the length of N.  If there is no such N, return -1.

 

Example 1:

Input:

 1

Output:

 1

Explanation:

 The smallest answer is N = 1, which has length 1.

Example 2:

Input:

 2

Output:

 -1

Explanation:

 There is no such positive integer N divisible by 2.

Example 3:

Input:

 3

Output:

 3

Explanation:

 The smallest answer is N = 111, which has length 3.

 

Note:

  • 1 <= K <= 10^5

Thoughts:

Two tricky parts.

  1. $n = ($n * 10 +1) % $K;Suppose r = (aK + b) when r > K, next r supposed to be 10r+1 = 10aK + 10b + 1. Since 10aK is divisible by K, we just need to consider 10b + 1. b is r % K, so we can update r = r % K. [By https://leetcode.com/wangqiuc/]
  2. The exit condition for loop, $n <= $K, actually, there always exist an answer, we can use while true instead.

Proof  [By https://leetcode.com/starsthu2016/]

 

It is obvious that if K is the multiple of 2 or multiple of 5, N is definitely not multiple of K because the ones digit of N is 1. Thus, return -1 for this case.

If K is neither multiple of 2 nor multiple of 5, we have this theorem.

Theorem: there must be one number from the K-long candidates list [1, 11, 111, …, 111..111(with K ones)], which is the multiple of K.

Why? Let’s think in the opposite way. Is it possible that none of the K candidates is the multiple of K?

If true, then the module of these K candidate numbers (mod K) must be in [1, .., K-1] (K-1 possible module values). Thus, there must be 2 candidate numbers with the same module. Let’s denote these two numbers as N_i with i ones, and N_j with j ones and i<j.

Thus N_j-N_i = 1111…1000…0 with (j-i) ones and i zeros. N_j-N_i = 111..11 (j-i ones) * 100000..000 (i zeros). We know that N_i and N_j have the same module of K. Then N_j-N_i is the multiple of K. However, 100000..000 (i zeros) does not contain any factors of K (K is neither multiple of 2 nor multiple of 5). Thus, 111..11 (j-i ones) is the multiple of K. This is contradictory to our assumption that all K candidates including 111..11 (j-i ones) are not multiple of K.

Finally, we know that there is at least one number, from the first K candidates, which is the multiple of K.

 

class Solution {

    /**
     * @param Integer $K
     * @return Integer
     */
    function smallestRepunitDivByK($K) {
        if($K % 2 == 0 || $K % 5 == 0){
            return -1;
        }
        $n = 1;
        $r = 1;
        while($n <= $K ){
            if($n % $K == 0){
                return  $r;
            }
            $n = ($n * 10 +1) % $K;
            $r ++;
        }
        return -1;
    }
}

 

 

1006. Clumsy Factorial

Normally, the factorial of a positive integer n is the product of all positive integers less than or equal to n.  For example, factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1.

We instead make a clumsy factorial: using the integers in decreasing order, we swap out the multiply operations for a fixed rotation of operations: multiply (*), divide (/), add (+) and subtract (-) in this order.

For example, clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1.  However, these operations are still applied using the usual order of operations of arithmetic: we do all multiplication and division steps before any addition or subtraction steps, and multiplication and division steps are processed left to right.

Additionally, the division that we use is floor division such that 10 * 9 / 8 equals 11.  This guarantees the result is an integer.

Implement the clumsy function as defined above: given an integer N, it returns the clumsy factorial of N.

 

Example 1:

Input:

4

Output:

 7

Explanation:

 7 = 4 * 3 / 2 + 1

Example 2:

Input:

10

Output:

12

Explanation:

12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1

 

Note:

  1. 1 <= N <= 10000
  2. -2^31 <= answer <= 2^31 - 1  (The answer is guaranteed to fit within a 32-bit integer.)

 


Thoughts:

  • Split into chunks of size 4, then deal with case 3 or 2 or 1
  • The first chunk has a positive sign, then negative starting from the second trunk, including the remaining (3, 2, or 1) part
  • if n < 4, the sign is positive

 


 

class Solution {

    /**
     * @param Integer $N
     * @return Integer
     */
    function clumsy($n) {
        $r = 0;
        $f = 0;
        $first_positive_chunk_set = false;
        
        if($n >= 4){
            $r = floor($n*($n-1)/($n-2)) + $n-3;
            $n -= 4;
            $first_positive_chunk_set = true;
        }
     
        
        while(floor($n / 4) >= 1){
            $r -= floor($n*($n-1)/($n-2)) - $n+3;
            $n -= 4;
        }
        if($n >= 3){
            $r -= floor($n*($n-1)/($n-2)) ;
            $n -= 3;
        }
        if($n >= 2){
            $r -= $n*($n-1) ;
            $n -= 2;
        }
        if($n >= 1){
            $r -= $n ;
            $n -= 1;
        }
        return $first_positive_chunk_set?$r:-$r;
    }
}

Another Solution Inspired by Other

  • Base on math
  • Other than that(short), this solution is hard to read and understand.
class Solution {

    /**
     * @param Integer $N
     * @return Integer
     */
    function clumsy($n) {
        if ($n<5){
            return  $n+3*($n>2);
        }
        return $n+2-3*($n%4==3)-($n%4==0);
    }
}

 

1007. Minimum Domino Rotations For Equal Row

In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domino is a tile with two numbers from 1 to 6 – one on each half of the tile.)

We may rotate the i-th domino, so that A[i] and B[i] swap values.

Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

If it cannot be done, return -1.

 

Example 1:

 

Input:

A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]

Output:

2

Explanation:

The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.

Example 2:

Input:

A = [3,5,1,2,3], B = [3,6,3,3,4]

Output:

-1

Explanation:

In this case, it is not possible to rotate the dominoes to make one row of values equal.

 

Note:

  1. 1 <= A[i], B[i] <= 6
  2. 2 <= A.length == B.length <= 20000

Thoughts:

  • Two possible values, A[0] and B[0]
  • For each possible value, and foreach index, if one doesn’t have while the other does add 1 to counter
  • There are two counters for each possible values, {B->A, A->B}
  • Return the best result

The speaking of domino’s top and bottom is misleading, no domino has the same value for top and bottom. Why not just say a single digit number?

 


class Solution {

    /**
     * @param Integer[] $A
     * @param Integer[] $B
     * @return Integer
     */
    function minDominoRotations($A, $B) {
  
        $p = [];      // Possible Values
        $p[] = $A[0]; // Either First elem if A
        $p[] = $B[0]; // Either First elem of B
        $r = [];      // List of mins 

        // Foreach Possible Values
        foreach($p as $s){
            $x = 0;   // Counter, swap B to match A's Value
            $y = 0;   // Counter, swap A to match B's Value
            $nf = false;    // For a possible value, not found both Swap A to B and B to A
            for($i = 0;$i < count($A); $i ++){
                if($s == $A[$i] && $s !== $B[$i]){
                    $y ++;
                } elseif ($s == $B[$i] && $s !== $A[$i]){
                    $x ++;
                } else if($s !== $A[$i] && $s !== $B[$i]) {
                    // If possible value not found in either array, move to next possible value.
                    $nf = true;
                    break;
                }
                
            }

            if(!$nf){
                // If found
                if($x == 0 || $y ==0){
                    // O is the best, no need to continue
                    return 0;
                }
                // Otherwise push the best counter result to array
                $r[] = min($x, $y);
            }

        }
        // When all possible values are no longer possible :(
        if(empty($r)){
            return -1;
        }
        // Otherwise return the best result
        return min($r);
    }
}

 

807. Max Increase to Keep City Skyline

In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located there. We are allowed to increase the height of any number of buildings, by any amount (the amounts can be different for different buildings). Height 0 is considered to be a building as well.

At the end, the “skyline” when viewed from all four directions of the grid, i.e. top, bottom, left, and right, must be the same as the skyline of the original grid. A city’s skyline is the outer contour of the rectangles formed by all the buildings when viewed from a distance. See the following example.

What is the maximum total sum that the height of the buildings can be increased?

Example:


Input:

 grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]]

Output:

 35

Explanation:

 
The grid is:
[ [3, 0, 8, 4], 
  [2, 4, 5, 7],
  [9, 2, 6, 3],
  [0, 3, 1, 0] ]

The skyline viewed from top or bottom is: [9, 4, 8, 7]
The skyline viewed from left or right is: [8, 7, 9, 3]

The grid after increasing the height of buildings without affecting skylines is:

gridNew = [ [8, 4, 8, 7],
            [7, 4, 7, 7],
            [9, 4, 8, 7],
            [3, 3, 3, 3] ]

Notes:

  • 1 < grid.length = grid[0].length <= 50.
  • All heights grid[i][j] are in the range [0, 100].
  • All buildings in grid[i][j] occupy the entire grid cell: that is, they are a 1 x 1 x grid[i][j] rectangular prism.

Thoughts;

  1. Vertical & Horizontal  scan, generate skyline view array
  2. Max increment = min(vertical, horizontal).
  3. Result = Sum (each max increment)

class Solution {

    /**
     * @param Integer[][] $grid
     * @return Integer
     */
    function maxIncreaseKeepingSkyline($grid) {
        if(empty($grid)){
            return 0;
        }
        $result = 0;
        $h = array_fill(0,count($grid), 0);
        $v = array_fill(0,count($grid[0]), 0);
        
        for($i = 0; $i < count($grid); $i ++){
            $h[$i] = max($grid[$i]);
            for($j = 0; $j < count($grid[0]); $j ++){
                if($grid[$i][$j] > $v[$j]){
                    $v[$j] = $grid[$i][$j];
                }
            }
        }
        
        for($i = 0; $i < count($grid); $i ++){
            for($j = 0; $j < count($grid[0]); $j ++){
                $max = min($h[$i], $v[$j]);
                $result += $max - $grid[$i][$j];
            }
        }
        return $result;
    }
}

 

987. Vertical Order Traversal of a Binary Tree

Given a binary tree, return the vertical order traversal of its nodes values.

For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).

Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).

If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.

Return an list of non-empty reports in order of X coordinate. Every report will have a list of values of nodes.

Example 1:

Input: [3,9,20,null,null,15,7]
Output: [[9],[3,15],[20],[7]]
Explanation:
Without loss of generality, we can assume the root node is at position (0, 0):
Then, the node with value 9 occurs at position (-1, -1);
The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
The node with value 20 occurs at position (1, -1);
The node with value 7 occurs at position (2, -2).

Example 2:

Input: [1,2,3,4,5,6,7]
Output: [[4],[2],[1,5,6],[3],[7]]
Explanation:
The node with value 5 and the node with value 6 have the same position according to the given scheme.
However, in the report “[1,5,6]”, the node value of 5 comes first since 5 is smaller than 6.

Note:

The tree will have between 1 and 1000 nodes.
Each node’s value will be between 0 and 1000.

My notes.

Mind the case.

[0,8,1,null,null,3,2,null,4,5,null,null,7,6]

          0
     8         1
          3         2
              4,5
          6         7

Rendered by Leetcode, with my lines added

Screen Shot 2019-02-18 at 15.10.02

My Solution

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     public $val = null;
 *     public $left = null;
 *     public $right = null;
 *     function __construct($value) { $this-&gt;val = $value; }
 * }
 */
class Solution {

    /**
     * @param TreeNode $root
     * @return Integer[][]
     */
    function verticalTraversal($root) {
        $result = [];
        $this-&gt;traversalHelper($root,0,0,$result);
        // Sort by col, from left to right
        ksort($result);
        foreach($result as &amp;$rs){
            $new_sub = [];
            // foreach col, sort by depth from top to bottom
            ksort($rs);
            foreach($rs as &amp;$r){
                // Same depth, sort by value asc, according to spec
                asort($r);
                $new_sub = array_merge($new_sub,$r);
            }
            $rs = $new_sub;
        }
        return $result;
    }
    
    // Recursion, go through the tree
    function traversalHelper($root, $pos,$depth, &amp;$result) {
        if($root !== null){
            if(!isset($result[$pos])){
                $result[$pos] = [];
            } 
            if(!isset($result[$pos][$depth])){
                $result[$pos][$depth] = [];
            }
            $result[$pos][$depth][] = $root-&gt;val;
            
            $this-&gt;traversalHelper($root-&gt;left, $pos - 1,$depth+1, $result);
            $this-&gt;traversalHelper($root-&gt;right, $pos + 1,$depth+1, $result);
        }
    }
}